

TRIGONOMETRIC FUNCTIONS OF ANY ANGLE

Copyright © Cengage Learning. All rights reserved.

1

What You Should Learn

- Evaluate trigonometric functions of any angle.
- Find reference angles.
- Evaluate trigonometric functions of real numbers.

Introduction

Introduction

Definitions of Trigonometric Functions of Any Angle

Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$.

Example 1 – Evaluating Trigonometric Functions

Let (-3, 4) be a point on the terminal side of θ . Find the sine, cosine, and tangent of θ .

Solution:

x = -3. v = 4.

= 5.

$$r = \sqrt{x^2 + y^2}$$
$$= \sqrt{(-3)^2 + 4^2}$$
$$= \sqrt{25}$$

(-3, 4) 4 r 3 2 1 θ -3 -2 -1 1 x

Example 1 – Solution

 $\sin \theta = \frac{y}{r} = \frac{4}{5}$ $\cos \theta = \frac{x}{r} = -\frac{3}{5}$ $\tan \theta = \frac{y}{x} = -\frac{4}{3}$

Introduction

Reference Angles

Definition of Reference Angle

Let θ be an angle in standard position. Its **reference angle** is the acute angle θ' formed by the terminal side of θ and the horizontal axis.

The reference angles for θ in Quadrants II, III, and IV.

Example 4 – *Finding Reference Angles*

Find the reference angle θ' .

a. θ = 300°

b. θ = 2.3

c. $\theta = -135^{\circ}$

Example 4(a) – Solution

Because 300° lies in Quadrant IV, the angle it makes with the *x*-axis is

 $\theta' = 360^\circ - 300^\circ$

= 60°.

Degrees

Example 4(b) – Solution

cont'd

Because 2.3 lies between $\pi/2 \approx 1.5708$ and $\pi \approx 3.1416$, it follows that it is in Quadrant II and its reference angle is

 $\theta' = \pi - 2.3$

≈ 0.8416.

Radians

Example 4(c) – Solution

cont'd

First, determine that –135° is coterminal with 225°, which lies in Quadrant III. So, the reference angle is

 $\theta' = 225^{\circ} - 180^{\circ}$

= 45°. Degrees

Trigonometric Functions of Real Numbers

Trigonometric Functions of Real Numbers

By definition, you know that

$$\sin \theta = \frac{y}{r} \quad \text{and} \quad \tan \theta = \frac{y}{x}.$$
For the right triangle with acute angle θ' and sides of lengths $|x|$ and $|y|$, you have
$$\sin \theta' = \frac{\text{opp}}{\text{hyp}} = \frac{|y|}{r}$$
and
$$\tan \theta' = \frac{\text{opp}}{\text{adj}} = \frac{|y|}{|x|}.$$

|X|

opp = |y|, adj = |x|

Trigonometric Functions of Real Numbers

Evaluating Trigonometric Functions of Any Angle

To find the value of a trigonometric function of any angle θ :

- **1.** Determine the function value for the associated reference angle θ' .
- 2. Depending on the quadrant in which θ lies, affix the appropriate sign to the function value.

θ (degrees)	0°	30°	45°	60°	90°	180°	270°
θ (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
sin θ	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undef.	0	Undef.

Example 5 – Using Reference Angles

Evaluate each trigonometric function.

a. $\cos \frac{4\pi}{3}$ **b.** $\tan(-210^{\circ})$

c. csc $\frac{11\pi}{4}$

Because $\theta = 4\pi/3$ lies in Quadrant III, the reference angle

$$\theta' = \frac{4\pi}{3} - \pi$$
$$= \frac{\pi}{3}$$

as shown in Figure 4.44.

is

Moreover, the cosine is negative in Quadrant III, so

$$\cos\frac{4\pi}{3} = (-)\cos\frac{\pi}{3}$$
$$= -\frac{1}{2}.$$

Figure 4.44

Example 5(b) – Solution

Because $-210^{\circ} + 360^{\circ} = 150^{\circ}$, it follows that -210° is coterminal with the second-quadrant angle 150°.

So, the reference angle is $\theta' = 180^\circ - 150^\circ = 30^\circ$, as shown in Figure 4.45.

Example 5(b) – Solution

Finally, because the tangent is negative in Quadrant II, you have

$$\tan(-210^\circ) = (-) \tan 30^\circ$$

= $-\frac{\sqrt{3}}{3}$.

cont'd

Because $(11\pi/4) - 2\pi = 3\pi/4$, it follows that $11\pi/4$ is coterminal with the second-quadrant angle $3\pi/4$.

So, the reference angle is $\theta' = \pi - (3\pi/4) = \pi/4$, as shown in Figure 4.46.

Example 5(c) – Solution

Because the cosecant is positive in Quadrant II, you have

$$\csc \frac{11\pi}{4} = (+) \csc \frac{\pi}{4}$$
$$= \frac{1}{\sin(\pi/4)}$$
$$= \sqrt{2}.$$