Mrs.Volynskaya Calculus Chapter 2 – Limits and Continuity
Limits found Graphically

A limit is the idea of looking at what happens to a function as you approach particular values of x.  Left-hand and right-hand limits are the idea of looking at what happens to a function as you approach a particular value of x, from a particular direction.

The limit of f(x) as x approaches the value of a from the left is written
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and the limit of f(x) as x approaches the value of a from the right is written
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Let’s explore these ideas with the graph of f(x) in Figure 3.1 below.

Figure 3.1
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Looking at f(x) when x = -2, you notice there is a “break” in the function.  However, if you approach x = -2 “from the left” (Figure 3.2a) you can see that the function values are getting closer and closer to 1.  On the other hand, if we approach x = -2 “from the right” (Figure 3.2b) you can see that the function values are getting closer and closer to 3.
             Figure 3.2a


            
 Figure 3.2b
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Looking at f(x) when x = 1, you notice there is a hole in the function.  If we approach f(x) from the left or from the right (Figure 3.3), you can see that the function values are getting closer and closer to 2.
Figure 3.3
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Therefore, the following statements are true.
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Example 1 Using the given graph of g(x), find the following left- and right-hand limits.

	a. 
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Solution

a. This asks us to look at the graph of g(x) as x approaches 0 from the left.  You can see that the function values are getting closer and closer to -1.  So,
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b. This asks us to look at the graph of g(x) as x approaches 0 from the right.  You can see that the function values are getting closer and closer to -1.  So,
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c. This asks us to look at the graph of g(x) as x approaches 1 from the left.  You can see that the function values are getting closer and closer to -2.  So,
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d. This asks us to look at the graph of g(x) as x approaches 1 from the right.  You can see that the function values are getting closer and closer to -2.  So,
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Notice that in the solutions to parts (c) and (d) above, the function value g(1)=1 does not play a role in determining the values of the limits.  A limit is strictly the behavior of a function “near” a point.
Example 2 Using the graph of h(x) below, find the following left- and right-hand limits.

	a. 
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Solution
a. Looking at the graph of h(x), as x approaches 4 from the left, you can see that the function values keep getting more and more negative, without end. Thus, we say that the function values approach negative infinity, written
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GRAPH?
b. Looking at the graph of h(x), as x approaches 4 from the right, you can see that the function values keep getting more and more positive without end. Thus, we say that the function values approach positive infinity, written
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GRAPH?
By considering both the left- and right-hand limits of a function as you approach a particular value of x, you can determine whether or not the limit of the function at that point exists.

Definition of a Limit at a Point:
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Therefore, if the left-hand limit does not equal the right-hand limit as x approaches a, then the limit as x approaches a does not exist.
Example 3 Using the graph of f(x) below, find the following limits.
	a. 
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	b. 
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Solution 

a. In previous investigations of this function, we found that 
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.  Therefore, by definition, since 
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It is important to notice that this limit exists even though f(1) does not exist.
b. In previous investigations of this function, we found that 
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.  Therefore, by definition, since 
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Example 4 Using the given graph of g(x), find 
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Solution  In previous investigations of this function, we found that 
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Example 5 Using the given graph of h(x), find 
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Solution  In previous investigations of this function, we found that 
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.  Therefore, by definition, since 
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So far we have been focusing on what is happening with functions at particular values of x by looking at what is happening to the function values corresponding to values very near to the x value.  Let’s now explore what happens to the function values when we allow x to approach positive and negative infinity. 
Figure 3.4
                                                                                                                                                                   
     Figure 3.4a               Figure 3.4b
              Figure 3.4c
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In Figure 3.4a, you can see that if you move to the right on the graph and allow x to continually become larger (approach infinity), the function values also become larger and larger.  If you move to the left on the graph and allow x to become more and more negative (approach negative infinity), you can see that the function values are again becoming larger and larger.  Thus, we have
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and 
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In Figure 3.4b, you can see that if you allow x to approach infinity, the function values go towards negative infinity.  If you allow x to approach negative infinity, you can see that the function values go towards positive infinity.  Thus, we have
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In Figure 3.4c, you can see that if you allow x to approach either positive or negative infinity, the function values approach zero.  Thus, we have
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When a function approaches a numerical value, say L, as 
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, we say that the function has a horizontal asymptote at y = L. Thus, we have just found that p(x) has a horizontal asymptote at y=0, while k(x) and m(x) have no horizontal asymptotes.
(Note: You can only approach positive infinity from the left and you can only approach negative infinity from the right so there is no discussion of left- and right-hand limits at infinity.)

Example 6  Using the graph of f(x) below, find the following limits.

	a. 
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	b. 
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	c. 
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Solution  
a. We need to find and compare the left- and right-hand limits of f(x) at x= -5.  As x approaches -5 from the left, f(x) approaches 1 and as x approaches -5 from the right, f(x) also approaches 1.  Therefore,
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b. As 
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c. As x approaches zero from the left, f(x) approaches 5.  Therefore, 
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d. As 
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Limits found Numerically and Algebraically

While almost all limits can be found graphically, as we have been discussing, it is not always practical or necessary if the function is defined algebraically.

For instance, say we are given that
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.  If we are looking for 
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, instead of having to graphically search for the answer, we can find both the left- and right-hand limits by using tables.  By choosing x values that get closer and closer to x = 3 from both sides, we can analyze the behavior of f(x).

Table 3.1
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	x
	2.99
	2.999
	2.9999
	3
	3.0001
	3.001
	3.01

	f(x)
	5.99
	5.999
	5.9999
	?
	6.0001
	6.001
	6.01


Notice that when we chose values on either side of x = 3, they were values that were very close to x = 3.  It seems that as x approaches 3 from either side, the function values are approaching 6.  Therefore, it seems reasonable to conclude that 
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We can check this conclusion by looking at the graph of f(x) near x = 3, as shown below.

GRAPH (how to clearly show break)??
Example 7 Using tables, find the following limits given that 
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a. 
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Solution
a. We need to construct a table with x-values approaching 2 from both sides.  Since all of these x-values are in the domain of x >1, we will use the part of the function defined by 
[image: image81.wmf]2
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to determine the function values in our table.
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	x
	1.99
	1.999
	1.9999
	2
	2.0001
	2.001
	2.01

	f(x)
	3.96
	3.996
	3.9996
	?
	4.0004
	4.004
	4.04


Approaching x=2 from both the left and the right sides shows that the function     values are approaching 4.  Thus,  
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b. We need to construct a table with x-values approaching 1 from both sides.  All x-values approaching x = 1 from the left are in the domain x < 1, so we will be using the part of the function defined by 4 when finding these function values.  All x-values approaching x = 1 from the right are in the domain x > 1, so we will use 
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 to find these function values in our table.
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	x
	0.99
	0.999
	0.9999
	1
	1.0001
	1.001
	1.01

	f(x)
	4
	4
	4
	?
	1.0002
	1.002
	1.0201


As 
[image: image88.wmf]1

x

®

 from the left, f(x) seems to be approaching 4, while as
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 from the right, f(x) seems to be approaching 1.  Since these are not equal, by definition,
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Making tables can still be as time-consuming as graphing, so we will use the following rules to algebraically evaluate limits more efficiently.  Most of these rules can intuitively be verified from looking at the previously worked examples.

Table 3.2 – Limit Rules
If a, c, and n, are real numbers, then 
1) 
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                (The limit of a constant real number is that number.)

2) 
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 where p(x) is any polynomial






           (The limit value of a polynomial is the function value at that point.)

3) 
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              (The limit of the product of a constant and a function equals the constant times the limit of the function.)   
4) 
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           (The limit of the sum or difference of two functions equals the sum or difference of the limits of the functions.)

5) 
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     (The limit of the product of two functions is the product of the limits of the functions.)

6) 
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(The limit of a quotient is the quotient of the limits of the numerator and denominator if the limit of the denominator is not zero.)

7) 
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 (provided this is defined)

(The limit of a function raised to a power equals the limit of the function raised to the power provided the math makes sense.)
Example 8 Evaluate 

a. 
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MORE EXAMPLES??
b. 
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Solution
a. 
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(Rule 2)

b. 
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(Rule 6)
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(Rule 2)

When you get 0/0 you have what is called an indeterminant form and you must try other techniques to determine the limit.  In this case, factor both the numerator and denominator and cancel common terms to remove the zero in the denominator.  Then, apply the limit rules to the simplified expression.
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(Factor)
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(Cancel common terms)


    = 3 + 3 = 6



(Rule 2)

c. 
[image: image106.wmf]4

4

4

lim1

1

lim

4lim4

x

x

x

xx

®

®

®

=

--





(Rule 6)
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(Rules 1 and 2)

This is not defined and whenever you get a result of a non-zero number over zero, there are no common factors in the numerator and denominator which can be cancelled.  Therefore, there is no way to rid the denominator of its zero term, meaning that the limit does not exist.  Looking at the graph of the function near 

x = 4 , we can see what is happening.

GRAPH with MAPLE
Notice this is the same function we analyzed when finding limits graphically.  There, we also found that the limit does not exist.

While these rules also apply when looking for limits at infinity (or negative infinity), it is almost always necessary to algebraically manipulate the expression of the function to determine the limit.

Example 9 Evaluate  
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Solution
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[image: image110.wmf] or or 
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 are all also known as indeterminant forms.  When this form occurs when finding limits at infinity (or negative infinity) with rational functions, divide every term in the numerator and denominator by the highest power of x in the denominator to determine the limit.
Since 
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 is the highest power of x in the denominator of our function, we have 
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TABLE OF SHORTCUT LIMITS AT INFINITY WITH RATIONAL FUNCTIONS??

Continuity
Definition:  A function f(x) is continuous at x = a, if all of the following are true:

1. f(a) is defined


(A function value exists at x=a.)
2. 
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(A limit value exists as you approach x=a.)

3. 
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(The function value equals the limit value at x=a.)

Graphically, this means that a function is continuous wherever the graph of the function has no holes, gaps, or jumps.  A function is said to be discontinuous at x = a, if a hole, gap, or break occurs in the graph at x = a, meaning the function violates one of the three items above.
Notice that the third item in the definition of continuity and Rule 2 of the Limit Rules 

show that all polynomial functions are continuous for all real values of x.
Example 10 Using the graph of f(x) below, find all values of x where f(x) is discontinuous and state why f(x) is discontinuous at these points, according to the definition of continuity. 
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Solution  
· x = -3, f(-3) is undefined 

· x = -2, f(-2) is undefined

· x = 1, while the function is defined by f(1)=5 and 
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, these are not equal and thus the third item of the definition is violated

· x = 4, 
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Example 11 Is 
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 continuous at x =1?  At x =3?
Solution For both values of x, we must check each of the three items in the definition of continuity.  If one of the items fails, f(x) not continuous at that particular x-value.
x = 1: 
First, check to see if a function value exists:  
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Next, check to see if a limit value exists:  
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Last, check that the function value equals the limit value, which it does in this case.  Therefore, f(x) is continuous at x =1.

x = 3:
First, check to see if a function value exists:  
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 is undefined
Therefore, since the first item of the definition is violated, f(x) is discontinuous at x = 3.

As previously stated, polynomial functions are continuous for all real values of x.  This is also true for exponential functions.  Moreover, it is true that rational functions are continuous for all real values of x that do not make the denominator zero and logarithmic functions are continuous for all x-values in their domains.

Exercises

Use the given graph of f(x) to answer Exercises 3.1-3.4.
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Exercise 3.1 Evaluate   
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Exercise 3.2 Evaluate   
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Exercise 3.3 Evaluate   
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Exercise 3.4 For what values of x is f(x) discontinuous?
Exercise 3.5 Fill in the given table and use it to find
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	x
	1.99
	1.999
	1.9999
	2
	2.0001
	2.001
	2.01

	
[image: image127.wmf]2

()

2

x

fx

x

-

=

-


	
	
	
	?
	
	
	


Exercise 3.6 Fill in the given table and use it to find
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	x
	-0.01
	-0.001
	-0.0001
	0
	0.0001
	0.001
	0.01
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Exercise 3.7 Evaluate   
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Exercise 3.8 Evaluate   
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Exercise 3.9 Evaluate   
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Exercise 3.10 Is 
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